WANtaroHP (f90: Plate Analysis by Navier)



Basic equations

The basic equations which shows the relationship between the deflection $w$ and resultant forces can be shown below.

Flexural rigidity of a plate
\begin{equation*} D=\cfrac{E h^3}{12 (1-\nu^2)} \end{equation*}

where, $E$ is Elastic modulus, $\nu$ is Poisson's ratio and $h$ is the plate thickness.

Moments
\begin{align*} &M_x=-D \left(\cfrac{\partial^2 w}{\partial x^2} + \nu\cfrac{\partial^2 w}{\partial y^2}\right)\\ &M_y=-D \left(\cfrac{\partial^2 w}{\partial y^2} + \nu\cfrac{\partial^2 w}{\partial x^2}\right)\\ &M_{xy}=-M_{yx}=D (1-\mu) \cfrac{\partial^2 w}{\partial x \partial y} \end{align*}
Shearing forces
\begin{align*} &Q_x=-D \cfrac{\partial}{\partial x}\left(\cfrac{\partial^2 w}{\partial x^2} + \cfrac{\partial^2 w}{\partial y^2}\right)\\ &Q_y=-D \cfrac{\partial}{\partial y}\left(\cfrac{\partial^2 w}{\partial x^2} + \cfrac{\partial^2 w}{\partial y^2}\right) \end{align*}
Reactions along the edges of a plate
\begin{align*} &V_x=\left(Q_x - \cfrac{\partial M_{xy}}{\partial y}\right)_{x=0}\\ &V_y=\left(Q_y - \cfrac{\partial M_{xy}}{\partial y}\right)_{y=0} \end{align*}
Reaction at the corner of a plate
\begin{equation*} R=2 (M_{xy})_{x=a, y=b} \end{equation*}


Solution for the simply supported rectangular plates (Navier solution)

Deflection

A rectangular plate with the length of $a$ in $x$ direction and the length of $b$ in $y$ direction is considered. In this method, distribution of the deflection $w(x,y)$ is expressed in the form of a double trigonometric series shown below.

\begin{equation*} w(x,y)=\sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \sin\cfrac{m \pi x}{a} \sin\cfrac{n \pi y}{b} \end{equation*}

where, $a_{mn}$ is acoefficient including the load factor. $a_{mn}$ and $q_{mn}$ can be expressed below.

\begin{gather*} a_{mn}=\cfrac{q_{mn}}{D \pi^4 \left\{\left(\cfrac{m}{a}\right)^2 + \left(\cfrac{n}{b}\right)^2\right\}^2} \\ q_{mn}=\cfrac{4}{a b}\int_0^a \int_0^b q(x,y) \sin\cfrac{m \pi x}{a} \cos\cfrac{n \pi y}{b} dx dy \end{gather*}

where, $q(x,y)$ is load distribution. If uniform load with intensity of $q_0$, $q_{mn}$ can be expressed below.

\begin{equation*} q_{mn}=\cfrac{16 q_0}{m n \pi^2} \qquad (m, n = 1,3,5, \cdots) \end{equation*}

Resultant forces in tge form of double trigorometric series

Derivatives of $w$ which are required to express resultant forces are shown below.

\begin{align*} &w = \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \sin\cfrac{m \pi x}{a} \cos\cfrac{n \pi y}{b} \\ &\cfrac{\partial w}{\partial x} = \pi \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \cfrac{m}{a} \cos\cfrac{m \pi x}{a} \sin\cfrac{n \pi y}{b} \\ &\cfrac{\partial w}{\partial y} = \pi \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \cfrac{n}{b} \sin\cfrac{m \pi x}{a} \cos\cfrac{n \pi y}{b} \\ &\cfrac{\partial^2 w}{\partial x^2} = - \pi^2 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \cfrac{m^2}{a^2} \sin\cfrac{m \pi x}{a} \sin\cfrac{n \pi y}{b} \\ &\cfrac{\partial^2 w}{\partial y^2} = - \pi^2 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \cfrac{n^2}{b^2} \sin\cfrac{m \pi x}{a} \sin\cfrac{n \pi y}{b} \\ &\cfrac{\partial^2 w}{\partial x \partial y} = \pi^2 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \cfrac{m n}{a b} \cos\cfrac{m \pi x}{a} \cos\cfrac{n \pi y}{b} \\ &\cfrac{\partial}{\partial x}\left(\cfrac{\partial^2 w}{\partial x^2} + \cfrac{\partial^2 w}{\partial y^2}\right) = - \pi^3 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\cfrac{m^2}{a^2}+\cfrac{n^2}{b^2}\right) \cfrac{m}{a} \cos\cfrac{m \pi x}{a} \sin\cfrac{n \pi y}{b} \\ &\cfrac{\partial}{\partial y}\left(\cfrac{\partial^2 w}{\partial x^2} + \cfrac{\partial^2 w}{\partial y^2}\right) = - \pi^3 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\cfrac{m^2}{a^2}+\cfrac{n^2}{b^2}\right) \cfrac{n}{b} \sin\cfrac{m \pi x}{a} \cos\cfrac{n \pi y}{b} \end{align*}

Using above, moments and shear forces can be obteined as shown below:

\begin{align*} M_x = D \pi^2 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\cfrac{m^2}{a^2} + \nu \cfrac{n^2}{b^2}\right) \sin\cfrac{m \pi x}{a} \sin\cfrac{n \pi y}{b} \\ M_y = D \pi^2 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\nu \cfrac{m^2}{a^2} + \cfrac{n^2}{b^2}\right) \sin\cfrac{m \pi x}{a} \sin\cfrac{n \pi y}{b} \\ M_{xy} = D (1-\nu) \pi^2 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\cfrac{m n}{a b}\right) \cos\cfrac{m \pi x}{a} \cos\cfrac{n \pi y}{b} \\ Q_x = D \pi^3 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\cfrac{m^2}{a^2} + \cfrac{n^2}{b^2}\right) \cfrac{m}{a} \cos\cfrac{m \pi x}{a} \sin\cfrac{n \pi y}{b} \\ Q_y = D \pi^3 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\cfrac{m^2}{a^2} + \cfrac{n^2}{b^2}\right) \cfrac{n}{b} \sin\cfrac{m \pi x}{a} \cos\cfrac{n \pi y}{b} \end{align*}

And using the following relationships, reactions $V_x$ and $V_y$ can be obtained.

\begin{align*} \cfrac{\partial M_{xy}}{\partial x} = - D (1-\nu ) \pi^3 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\cfrac{m n}{a b}\right) \cfrac{m}{a} \sin\cfrac{m \pi x}{a} \cos\cfrac{n \pi y}{b} \\ \cfrac{\partial M_{xy}}{\partial y} = - D (1-\nu ) \pi^3 \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\cfrac{m n}{a b}\right) \cfrac{n}{b} \cos\cfrac{m \pi x}{a} \sin\cfrac{n \pi y}{b} \end{align*}

Program

FilenameDescription
a_f90.txtShell script for execution
f90_navier.f90Coefficients by Navier method under uniform distributed load (1)
f90_navier_m.f90Coefficients by Navier method under uniform distributed load (2)

Program (1) is for making below table, and program (2) is for getting only one case of model size by input of Elastic modulus, Poisson's ratio, plate size a, b and t.



Example of an analysis

In the following table, numerical factors α, β, γ, δ and n for uniformly loaded and simply supported rectangular plate are show.

b/a(w)(Mx)(My)(Qx)(Qy)(Vx)(Vy)(R)
(b>=a)αββ1γγ1δδ1n
1.0000.004060.04790.04790.3370.3370.4200.4200.065
1.1000.004870.05550.04930.3600.3460.4400.4380.071
1.2000.005650.06270.05010.3790.3530.4560.4530.076
1.3000.006390.06940.05030.3960.3580.4680.4640.080
1.4000.007080.07550.05020.4110.3610.4780.4730.083
1.5000.007720.08120.04980.4240.3640.4850.4790.086
1.6000.008310.08620.04930.4350.3660.4910.4850.088
1.7000.008840.09080.04860.4440.3670.4960.4890.090
1.8000.009320.09480.04790.4520.3680.4990.4920.091
1.9000.009740.09850.04710.4590.3690.5010.4940.092
2.0000.010130.10170.04640.4650.3700.5030.4960.093
3.0000.012230.11890.04060.4930.3710.5050.5010.095
4.0000.012820.12350.03840.4980.3710.5020.5010.095
5.0000.012970.12460.03770.4990.3710.5000.5010.095
6.0000.013010.12490.03760.5000.3710.5000.5010.095
7.0000.013020.12500.03750.5000.3710.5000.5010.095
8.0000.013020.12500.03750.5000.3710.5000.5010.095
9.0000.013020.12500.03750.5000.3710.5000.5010.095
10.0000.013020.12500.03750.5000.3710.5000.5010.095
Poisson's ratio $\nu=0.3$

The meanings of the factors in above table are shown below.

\begin{gather*} w_{max}=\alpha \cdot \cfrac{q a^4}{D} \\ (M_x)_{max}=\beta \cdot q a^2 \qquad (M_y)_{max}=\beta_1 \cdot q a^2 \\ (Q_x)_{max}=\gamma \cdot q a \qquad (Q_y)_{max}=\gamma_1 \cdot q a \\ (V_x)_{max}=\delta \cdot q a \qquad (V_y)_{max}=\delta_1 \cdot q a \qquad R= n \cdot q a^2 \end{gather*}


inserted by FC2 system