WANtaroHP (f90: RC Pressure Tunnel Analysis)



Outline

We consider to turn RC pressure tunnel with the uniform circular cross section into a multiple cyclinder model with thick wall in the state of the plane strain. In this case, it is not necessary to consider the shearing strain and stress because of zero of those values.

Concept for making a model is indicated below.

  • The pressure tunnel has the uniform circular cross section and it is a RC structure.
  • The area of a model submitted to the internal water pressure includes the RC structure and the bedrock.
  • The concrete submitted to the internal water pressure does not transmit the circumferential tensile stress because of the crack occurrence.
  • The external water pressure is act on the outer surface of the concrete, and the bedrock area is not included in the model.
  • Since only compressive stress is act to the RC structure submitted to the external water pressure, it seems that the concrete and re-bar have complete elastic bodies.
  • The uniform temperature change in the RC structure is considered and the temperature change in the bedrock is not considered because of simplification of a model.
  • Since the cover of the re-bar is large comparatively, the cover is considered in the model.

Basic theory is created refering to the text of ''Theory of Elasticity, Chapter 13 Thermal Stress'' by Timoshenko and Goodier.



Basic equations

Complete elastic body

Since it is not necessary to consider the shearing strain and stress in the uniform pressure and the uniform circular cross section, general expressions of the stress-strain relationship can be indicated below.

\begin{equation} \begin{cases} \epsilon_r -\alpha T=\cfrac{1}{E}\{\sigma_r-\nu(\sigma_{\theta}+\sigma_z)\} \\ \epsilon_{\theta}-\alpha T=\cfrac{1}{E}\{\sigma_{\theta}-\nu(\sigma_z+\sigma_r)\} \\ \epsilon_z -\alpha T=\cfrac{1}{E}\{\sigma_z-\nu(\sigma_r+\sigma_{\theta})\} \end{cases} \end{equation}

where,

$r$ Radial direction   $E$ Elastic modulus of the material
$\theta$ Circumferential direction $\nu$ Poisson's ratio of the material
$z$ Logitudinal direction $\alpha$ Coefficient of the thermal expansion
$\sigma$ Normal stress $T$ Temperature change
$\epsilon$ Normal strain

In the state of the plane strain, $\epsilon_z=0$ . Then,

\begin{equation} \begin{cases} \sigma_z=\nu(\sigma_r+\sigma_{\theta})-E\alpha T \\ \epsilon_r -\alpha T=\cfrac{1}{E}\{(1-\nu^2)\sigma_r-\nu(1+\nu)\sigma_{\theta}\} \\ \epsilon_{\theta}-\alpha T=\cfrac{1}{E}\{(1-\nu^2)\sigma_{\theta}-\nu(1+\nu)\sigma_r\} \end{cases} \end{equation}
\begin{equation} \begin{cases} \sigma_r =\cfrac{E}{(1+\nu)(1-2\nu)}\{(1-\nu)\epsilon_r+\nu\epsilon_{\theta}-(1+\nu)\alpha T\} \\ \sigma_{\theta}=\cfrac{E}{(1+\nu)(1-2\nu)}\{\nu\epsilon_r+(1-\nu)\epsilon_{\theta}-(1+\nu)\alpha T\} \end{cases} \end{equation}

The strain-displacement relationship (compatibility equations) can be expressed below, where $u$ means the displacement in the radial direction.

\begin{equation} \epsilon_r=\cfrac{du}{dr} \qquad \epsilon_{\theta}=\cfrac{u}{r} \end{equation}

The differential equations of equilibrium in the thick wall circular cylinder becomes shown below.

\begin{equation} \cfrac{d\sigma_r}{dr}+\cfrac{\sigma_r-\sigma_{\theta}}{r}=0 \end{equation}

(Reference)
png

We can obtain following equation from equilibrium of small element,

\begin{equation*} r\Delta\theta\cdot\sigma_r+2 dr\cdot\sigma_{\theta}\sin\left(\frac{\Delta\theta}{2}\right)=(r+dr) \Delta\theta (\sigma_r+d\sigma_r) \end{equation*}

From above, the differential equation shown below can be derived using the approximation of $\sin(\Delta\theta/2) \doteqdot \Delta\theta/2$ , eliminating $\Delta\theta$ from both side and neglecting the small terms.

\begin{equation*} \cfrac{d\sigma_r}{dr}+\cfrac{\sigma_r-\sigma_{\theta}}{r}=0 \end{equation*}

Therefore,

\begin{equation} \cfrac{d\sigma_r}{dr}+\cfrac{\sigma_r-\sigma_{\theta}}{r} =\cfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}\left\{\cfrac{d^2 u}{dr^2}+\cfrac{1}{r}\cfrac{du}{dr}-\cfrac{u}{r^2}-\cfrac{(1+\nu)}{(1-\nu)}\cdot\alpha\cfrac{dT}{dr}\right\}=0 \end{equation}
\begin{equation} \cfrac{d^2 u}{dr^2}+\cfrac{1}{r}\cfrac{du}{dr}-\cfrac{u}{r^2}=\cfrac{(1+\nu)}{(1-\nu)}\cdot\alpha\cfrac{dT}{dr} \qquad\rightarrow\qquad \cfrac{d}{dr}\left[\cfrac{1}{r}\cfrac{d(ru)}{dr}\right]=\cfrac{(1+\nu)} {(1-\nu)}\cdot\alpha\cfrac{dT}{dr} \end{equation}

where,

\begin{align} \cfrac{d}{dr}\left[\cfrac{1}{r}\cfrac{d(ru)}{dr}\right]=0 \quad \rightarrow\quad \text{general solution}\quad u=C_1\cdot r+\cfrac{C_2}{r} \\ \cfrac{d}{dr}\left[\cfrac{1}{r}\cfrac{d(ru)}{dr}\right]=\cfrac{(1+\nu)}{(1-\nu)}\cdot\alpha\cfrac{dT}{dr} \quad \rightarrow\quad \text{particular solution}\quad u=\cfrac{1+\nu}{1-\nu}\cdot\alpha\cfrac{1}{r}\int_a^r T r dr \end{align}

From above, following equations related to the displacement and stress can be obtained. In the following equations, $r$ means the coordinate in the radial direction, and $a$ means the radial coordinate of the smaller boundary value in each material.

\begin{equation} \begin{cases} \displaystyle u = \cfrac{1+\nu}{1-\nu}\cdot \alpha\cfrac{1}{r}\int_a^r T r dr+C_1\cdot r+\cfrac{C_2}{r} \\ \displaystyle \sigma_r =-\cfrac{\alpha E}{1-\nu}\cdot \cfrac{1}{r^2}\int_a^r T r dr+\cfrac{E}{(1+\nu)(1-2\nu)}\cdot C_1-\cfrac{E}{(1+\nu)}\cfrac{C_2}{r^2} \\ \displaystyle \sigma_{\theta}= \cfrac{\alpha E}{1-\nu}\cdot \cfrac{1}{r^2}\int_a^r T r dr-\cfrac{\alpha E T}{1-\nu}+\cfrac{E}{(1+\nu)(1-2\nu)}\cdot C_1+\cfrac{E}{(1+\nu)}\cfrac{C_2}{r^2} \\ \displaystyle \sigma_z =-\cfrac{\alpha E T}{1-\nu}+\cfrac{2\nu E}{(1+\nu)(1-2\nu)}\cdot C_1 \end{cases} \end{equation}

No-tension material in the circumferential direction

We consider the concrete submitted the internal water pressure which cannot transmit the circumferential tensile stress, and find the basic equation of that behavior.

In the equation of equilibrium, following equation can be obtain using the condition of $\sigma_{\theta}=0$ .

\begin{equation} \cfrac{d\sigma_r}{dr}+\cfrac{\sigma_r}{r}=0 \end{equation}

Since the no-tension material can seem a uniaxial material, we can assume the Poisson's ratio is equal to zero ( $\nu=0$ ). So, following equations can be obtained using the stress-strain relationship.

\begin{equation} \sigma_r=E\epsilon_r-E\alpha T \quad\rightarrow\quad \sigma_r=E\cfrac{du}{dr}-E\alpha T \quad \left(\epsilon_r=\cfrac{du}{dr}\right) \end{equation}
\begin{equation} \cfrac{d\sigma_r}{dr}+\cfrac{\sigma_r}{r}=E\left\{\cfrac{d^2 u}{dr^2}+\cfrac{1}{r}\cfrac{du}{dr}-\alpha\left(\cfrac{dT}{dr}+\cfrac{T}{r}\right)\right\}=0 \end{equation}

Next, we can find a general solution and a particular solution of the differential equation as follow.

\begin{align} \cfrac{d^2 u}{dr^2}+\cfrac{1}{r}\cfrac{du}{dr}=0 \quad \rightarrow\quad \text{general solution}\quad u=C_1+C_2\ln(r) \\ \cfrac{d^2 u}{dr^2}+\cfrac{1}{r}\cfrac{du}{dr}-\alpha\left(\cfrac{dT}{dr}+\cfrac{T}{r}\right) \quad \rightarrow\quad \text{particular solution}\quad u=\alpha\int_a^r T dr \end{align}

From above, we can find the displacement and stress as follows. Regarding the sequence of $C_1$ and $C_2$ , it is considered that diagonal members in the simultaneous equations don't become zero. And in the following equations, $r$ means the coordinate in the radial direction, and $a$ means the radial coordinate of the smaller boundary value in each material.

\begin{equation} \begin{cases} \displaystyle u=C_1+C_2\ln(r)+\alpha\int_a^r T dr \\ \displaystyle \sigma_r=E\cfrac{C_2}{r} \end{cases} \end{equation}


Application of the basic equation to each material

We apply the basic equations to each materials which compose the model. And we confirm the following assumptions.

  • The bedrock has the complete elastic body.
  • The re-bar has the complete elastic body and it can transmit the stresses in the radial and circumferential direction and also tensile and compressive stresses.
  • The concrete submitted to the internal pressure seems the no-tension material in the circumferential direction.
  • The concrete submitted to the external pressure has the complete elastic body.
  • The normal stress in the longitudinal direction $\sigma_z$ is not considered because it can be obtained as a result of the calculation of other items.
  • The temperature change is considered only in the RC structure and the value of it has uniform distribution in the RC structure. The temperature change in the bedrock is not considered.

Bedrock

The basic equation for the bedrock is shown below under the condition of complete elastic body and no temperature change.

\begin{equation} \begin{cases} \displaystyle u_g =C_{g1}\cdot r+\cfrac{C_{g2}}{r} \\ \displaystyle \sigma_{rg} =\cfrac{E_g}{(1+\nu_g)(1-2\nu_g)}\cdot C_{g1}-\cfrac{E_g}{(1+\nu_g)}\cfrac{C_{g2}}{r^2} \\ \displaystyle \sigma_{\theta g}=\cfrac{E_g}{(1+\nu_g)(1-2\nu_g)}\cdot C_{g1}+\cfrac{E_g}{(1+\nu_g)}\cfrac{C_{g2}}{r^2} \end{cases} \end{equation}

Re-bar

The basic equation for the re-bar is shown below under the condition of complete elastic body and unidorm temperature change.

\begin{equation} \begin{cases} \displaystyle \cfrac{1+\nu_s}{1-\nu_s}\cdot \alpha_s\cfrac{1}{r}\int_a^r T r dr=\cfrac{1+\nu_s}{1-\nu_s}\cdot \alpha_s T \cfrac{r^2-a^2}{2r} \\ \displaystyle \cfrac{\alpha_s E_s}{1-\nu_s}\cdot \cfrac{1}{r^2}\int_a^r T r dr=-\cfrac{E_s \alpha_s T}{1-\nu}\cdot \cfrac{r^2-a^2}{2r^2} \\ \displaystyle \cfrac{\alpha_s E_s}{1-\nu_s}\cdot \cfrac{1}{r^2}\int_a^r T r dr-\cfrac{\alpha_s E_s T}{1-\nu}=-\cfrac{E_s \alpha_s T}{1-\nu}\cdot \cfrac{r^2+a^2}{2r^2} \end{cases} \end{equation}

Thus,

\begin{equation} \begin{cases} \displaystyle u_s = \cfrac{1+\nu_s}{1-\nu_s}\cdot \alpha_s T \cfrac{r^2-a^2}{2r}+C_{s1}\cdot r+\cfrac{C_{s2}}{r} \\ \displaystyle \sigma_{rs} =-\cfrac{E_s \alpha_s T}{1-\nu}\cdot \cfrac{r^2-a^2}{2r^2}+\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)}\cdot C_{s1}-\cfrac{E_s}{(1+\nu_s)}\cfrac{C_{s2}}{r^2} \\ \displaystyle \sigma_{\theta s}=-\cfrac{E_s \alpha_s T}{1-\nu}\cdot \cfrac{r^2+a^2}{2r^2}+\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)}\cdot C_{s1}+\cfrac{E_s}{(1+\nu_s)}\cfrac{C_{s2}}{r^2} \end{cases} \end{equation}

Concrete submitted to the internal water pressure (no-tension material)

The basic equation for the concrete is shown below under the condition of no-tension material and unidorm temperature change.

\begin{equation} \alpha_c\int_a^r T dr=\alpha_c T(r-a) \end{equation}
Thus,
\begin{equation} \begin{cases} \displaystyle u_c=C_{c1}+C_{c2}\ln(r)+\alpha_c T(r-a) \\ \displaystyle \sigma_{rc}=E_c\cfrac{C_{c2}}{r} \\ \displaystyle \sigma_{\theta c}=0 \end{cases} \end{equation}

Concrete submitted to the external water pressure (complete elastic body)

The basic equation for the concrete is shown below under the condition of complete elastic body and unidorm temperature change.

\begin{equation} \begin{cases} \displaystyle u_c = \cfrac{1+\nu_c}{1-\nu_c}\cdot \alpha_c T \cfrac{r^2-a^2}{2r}+C_{c1}\cdot r+\cfrac{C_{c2}}{r} \\ \displaystyle \sigma_{rc} =-\cfrac{E_c \alpha_c T}{1-\nu}\cdot \cfrac{r^2-a^2}{2r^2}+\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)}\cdot C_{c1}-\cfrac{E_c}{(1+\nu_c)}\cfrac{C_{c2}}{r^2} \\ \displaystyle \sigma_{\theta s}=-\cfrac{E_c \alpha_c T}{1-\nu}\cdot \cfrac{r^2+a^2}{2r^2}+\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)}\cdot C_{c1}+\cfrac{E_c}{(1+\nu_c)}\cfrac{C_{c2}}{r^2} \end{cases} \end{equation}


Assembly of the simultaneous equations

We assemble the simultaneous equations applying the boundary conditions at the joints of the materials. If we solve that simultaneous equations, we can know the undetermined coefficients and evaluate the displacement and stress of the structure.

  • Model submitted to the internal water pressure
    Loads considered are the internal water pressure (positive: outer direction) and uniform temperature change in the RC structure (positive: temperature increase). The concrete seems the no-tension material.
  • Model submitted to the external water pressure
    Loads considered are the external water pressure which is act on the the outer surface of concrete (positive: inner direction) and uniform temperature change in the RC structure (positive: temperature increase). The concrete seems the complete elastic material. If the temperature decrease has large effect, the tensile stress may be observed in the concrete body. In this case, it shall be checked the value of tensile stress exceeds the tensile strength of the concrete or not.
png
Model of RC Presuure Tunnel for Analysis


Loading condition for the each model
ModelInternal Pressure ModelExternal Pressure Model
Load model png png
Concrete: No-tension body Concrete: Linear elastic body
Bed rock is included. Bed rock is not included.
Loads Internal pressure $P_0$ External pressure $P_e$
Temperature change Temperature change
Re-bar Double or Single Double or Single
n *) Double: 12th, Single: 8th Double: 10th, Single: 6th
*) n is the dimension of linear equations.


Single re-bar section submitted to the internal water pressure

RowLocationConditionCoefficientType of unknown
1 $r=R$ Zero displacement at the outer edge of the bedrock $C_{g1}$ $C_1$ for the bedrock
2 $r=r_b$ Continuity of the stress value at the boundary of the bedrock and concrete $C_{g2}$ $C_2$ for the bedrock
3 $r=r_b$ Continuity of the displacement at the boundary of the bedrock and the concrete $C_{co1}$ $C_1$ for the concrete
4 $r=r_2$ Continuity of the stress value at the concrete and outer surface of the re-bar $C_{co2}$ $C_2$ for the concrete
5 $r=r_2$ Continuity of the displacement at the concrete and outer surface of the re-bar $C_{s1}$ $C_1$ for the re-bar
6 $r=r_1$ Continuity of the stress value at the concrete and inner surface of the re-bar $C_{s2}$ $C_2$ for the re-bar
7 $r=r_1$ Continuity of the displacement at the concrete and inner surface of the re-bar $C_{ci1}$ $C_1$ for the concrete
8 $r=r_a$ The stress value at inner surface of the concrete is equal to the internal pressure $P_0$ $C_{ci2}$ $C_2$ for the concrete
\begin{equation} \begin{bmatrix} a_{1,1} & a_{1,2} & 0 & 0 & 0 & 0 & 0 & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & 0 & 0 & 0 & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & 0 & 0 \\ 0 & 0 & a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{6,5} & a_{6,6} & a_{6,7} & a_{6,8} \\ 0 & 0 & 0 & 0 & a_{7,5} & a_{7,6} & a_{7,7} & a_{7,8} \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{8,7} & a_{8,8} \\ \end{bmatrix} \begin{Bmatrix} C_{g1} \\ C_{g2} \\ C_{co1} \\ C_{co2} \\ C_{s1} \\ C_{s2} \\ C_{ci1} \\ C_{ci2} \\ \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ \alpha_c T(r_b-r_2) \\ -\frac{E_s \alpha_s T}{1-\nu_s}\cdot\frac{r_2{}^2-r_1{}^2}{2\cdot r_2{}^2} \\ \frac{1+\nu_s}{1-\nu_s}\alpha_s T \cdot\frac{r_2{}^2-r_1{}^2}{2\cdot r_2} \\ 0 \\ \alpha_c T(r_1-r_a) \\ -P_0 \\ \end{Bmatrix} \end{equation}
\begin{align*} &a_{1,1}=R &~&a_{1,2}=\cfrac{1}{R} &~& &~& \\ &a_{2,1}=\cfrac{E_g}{(1+\nu_g)(1-2\nu_g)} & &a_{2,2}=-\cfrac{E_g}{1+\nu_g}\cdot\cfrac{1}{r_b{}^2} & &a_{2,3}=0 & &a_{2,4}=\cfrac{E_c}{r_b} \\ &a_{3,1}=r_b & &a_{3,2}=\cfrac{1}{r_b} & &a_{3,3}=-1 & &a_{3,4}=-\ln(r_b) \\ &a_{4,3}=0 & &a_{4,4}=\cfrac{E_c}{r_2} & &a_{4,5}=-\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{4,6}=\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_2{}^2} \\ &a_{5,3}=1 & &a_{5,4}=\ln(r_2) & &a_{5,5}=-r_2 & &a_{5,6}=-\cfrac{1}{r_2} \\ &a_{6,5}=\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{6,6}=-\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_1{}^2} & &a_{6,7}=0 & &a_{6,8}=-\cfrac{E_c}{r_1} \\ &a_{7,5}=r_1 & &a_{7,6}=\cfrac{1}{r_1} & &a_{7,7}=-1 & &a_{7,8}=-\ln(r_1) \\ &a_{8,7}=0 & &a_{8,8}=\cfrac{E_c}{r_a} & & & & \\ \end{align*}


Double re-bar section submitted to the internal water pressure

RowLocationConditionCoefficientType of unknown
1 $r=R$ Zero displacement at the outer edge of the bedrock $C_{g1}$ $C_1$ for the bedrock
2 $r=r_b$ Continuity of the stress value at the boundary of the bedrock and the concrete $C_{g2}$ $C_2$ for the bedrock
3 $r=r_b$ Continuity of the displacement at the boundary of the bedrock and the concrete $C_{co1}$ $C_1$ for the concrete
4 $r=r_4$ Continuity of the stress value at the concrete and the outer surface of outer re-bar $C_{co2}$ $C_2$ for the concrete
5 $r=r_4$ Continuity of the displacement at the concrete and the outer surface of outer re-bar $C_{so1}$ $C_1$ for the outer re-bar
6 $r=r_3$ Continuity of the stress value at the concrete and the inner surface of outer re-bar $C_{so2}$ $C_2$ for the outer re-bar
7 $r=r_3$ Continuity of the displacement at the concrete and the inner surface of outer re-bar $C_{cm1}$ $C_1$ for the concrete
8 $r=r_2$ Continuity of the stress value at the concrete and the outer surface of inner re-bar $C_{cm2}$ $C_2$ for the concrete
9 $r=r_2$ Continuity of the displacement at the concrete and the outer surface of inner re-bar $C_{si1}$ $C_1$ for the inner re-bar
10 $r=r_1$ Continuity of the stress value at the concrete and the inner surface of inner re-bar $C_{si2}$ $C_2$ for the inner re-bar
11 $r=r_1$ Continuity of the displacement at the concrete and the inner surface of inner re-bar $C_{ci}$ $C_1$ for the concrete
12 $r=r_a$ The stress value at inner surface of the concrete is equal to the internal pressure $P_0$ $C_{ci}$ $C_2$ for the concrete
\begin{equation} \begin{bmatrix} a_{1,1} & a_{1,2} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & 0 & 0 & \cdots & 0 & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & \cdots & 0 & 0 \\ 0 & 0 & a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{6,5} & a_{6,6} & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{7,5} & a_{7,6} & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & a_{10,11} & a_{10,12} \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & a_{11,11} & a_{11,12} \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & a_{12,11} & a_{12,12} \\ \end{bmatrix} \begin{Bmatrix} C_{g1} \\ C_{g2} \\ C_{co1} \\ C_{co2} \\ C_{so1} \\ C_{so2} \\ C_{cm1} \\ C_{cm2} \\ C_{si1} \\ C_{si2}\\ C_{ci1} \\ C_{ci2} \\ \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ \alpha_c T(r_b-r_4) \\ -\frac{E_s \alpha_s T}{1-\nu_s}\cdot\frac{r_4{}^2-r_3{}^2}{2\cdot r_4{}^2} \\ \frac{1+\nu_s}{1-\nu_s}\alpha_s T \cdot\frac{r_4{}^2-r_3{}^2}{2\cdot r_4} \\ 0 \\ \alpha_c T(r_3-r_2) \\ -\frac{E_s \alpha_s T}{1-\nu_s}\cdot\frac{r_2{}^2-r_1{}^2}{2\cdot r_2{}^2} \\ \frac{1+\nu_s}{1-\nu_s}\alpha_s T \cdot\frac{r_2{}^2-r_1{}^2}{2\cdot r_2} \\ 0 \\ \alpha_c T(r_1-r_a) \\ -P_0 \\ \end{Bmatrix} \end{equation}
\begin{align*} &a_{1,1}=R &~&a_{1,2}=\cfrac{1}{R} &~& &~& \\ &a_{2,1}=\cfrac{E_g}{(1+\nu_g)(1-2\nu_g)} & &a_{2,2}=-\cfrac{E_g}{1+\nu_g}\cdot\cfrac{1}{r_b{}^2} & &a_{2,3}=0 & &a_{2,4}=\cfrac{E_c}{r_b} \\ &a_{3,1}=r_b & &a_{3,2}=\cfrac{1}{r_b} & &a_{3,3}=-1 & &a_{3,4}=-\ln(r_b) \\ &a_{4,3}=0 & &a_{4,4}=\cfrac{E_c}{r_4} & &a_{4,5}=-\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{4,6}=\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_4{}^2} \\ &a_{5,3}=1 & &a_{5,4}=\ln(r_4) & &a_{5,5}=-r_4 & &a_{5,6}=-\cfrac{1}{r_4} \\ &a_{6,5}=\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{6,6}=-\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_3{}^2} & &a_{6,7}=0 & &a_{6,8}=-\cfrac{E_c}{r_3} \\ &a_{7,5}=r_3 & &a_{7,6}=\cfrac{1}{r_3} & &a_{7,7}=-1 & &a_{7,8}=-\ln(r_3) \\ &a_{8,7}=0 & &a_{8,8}=\cfrac{E_c}{r_2} & &a_{8,9}=-\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{8,10}=\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_2{}^2} \\ &a_{9,7}=1 & &a_{9,8}=\ln(r_2) & &a_{9,9}=-r_2 & &a_{9,10}=-\cfrac{1}{r_2} \\ &a_{10,9}=\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{10,10}=-\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_1{}^2} & &a_{10,11}=0 & &a_{10,12}=-\cfrac{E_c}{r_1} \\ &a_{11,9}=r_1 & &a_{11,10}=\cfrac{1}{r_1} & &a_{11,11}=-1 & &a_{11,12}=-\ln(r_1) \\ &a_{12,11}=0 & &a_{12,12}=\cfrac{E_c}{r_a} & & & & \\ \end{align*}


Single re-bar section submitted to the external water pressure

RowLocationConditionCoefficientType of unknown
1 $r=r_b$ The stress value at the outer surface of the concrete is equal to the external pressure $P_e$ $C_{co1}$ $C_1$ for the concrete
2 $r=r_2$ Continuity of the stress value at the boundary of the concrete and outer surface of re-bar $C_{co2}$ $C_2$ for the concrete
3 $r=r_2$ Continuity of the displacement at the boundary of the concrete and outer surface of re-bar $C_{s1}$ $C_1$ for the re-bar
4 $r=r_1$ Continuity of the stress value at the boundary of the concrete and inner surface of re-bar $C_{s2}$ $C_2$ for the re-bar
5 $r=r_1$ Continuity of the displacement at the boundary of the concrete and inner surface of re-bar $C_{ci1}$ $C_1$ for the concrete
6 $r=r_a$ Zero stress value at the inner surface of the concrete $C_{ci2}$ $C_2$ for the concrete
\begin{equation} \begin{bmatrix} a_{1,1} & a_{1,2} & 0 & 0 & 0 & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & 0 & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & 0 & 0 \\ 0 & 0 & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} \\ 0 & 0 & a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} \\ 0 & 0 & 0 & 0 & a_{6,5} & a_{6,6} \\ \end{bmatrix} \begin{Bmatrix} C_{co1} \\ C_{co2} \\ C_{s1} \\ C_{s2} \\ C_{ci1} \\ C_{ci2} \\ \end{Bmatrix} = \begin{Bmatrix} -P_e \\ -\frac{E_s \alpha_s T}{1-\nu_s}\cdot\frac{r_2{}^2-r_1{}^2}{2\cdot r_2{}^2} \\ \frac{1+\nu_s}{1-\nu_s}\alpha_s T \cdot\frac{r_2{}^2-r_1{}^2}{2\cdot r_2} \\ -\frac{E_c \alpha_c T}{1-\nu_c}\cdot\frac{r_1{}^2-r_a{}^2}{2\cdot r_1{}^2} \\ \frac{1+\nu_c}{1-\nu_c}\alpha_c T \cdot\frac{r_1{}^2-r_a{}^2}{2\cdot r_1} \\ 0 \\ \end{Bmatrix} \end{equation}
\begin{align*} &a_{1,1}=\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} &~&a_{1,2}=-\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_b{}^2} &~& &~& \\ &a_{2,1}=\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} & &a_{2,2}=-\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_2{}^2} & &a_{2,3}=-\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{2,4}=\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_2{}^2} \\ &a_{3,1}=r_2 & &a_{3,2}=\frac{1}{r_2} & &a_{3,3}=-r_2 & &a_{3,4}=-\cfrac{1}{r_2} \\ &a_{4,3}=\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{4,4}=-\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_1{}^2} & &a_{4,5}=-\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} & &a_{4,6}=\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_1{}^2} \\ &a_{5,3}=r_1 & &a_{5,4}=\frac{1}{r_1} & &a_{5,5}=-r_1 & &a_{5,6}=-\cfrac{1}{r_1} \\ &a_{6,5}=\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} &~&a_{6,6}=-\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_a{}^2} &~& &~& \\ \end{align*}


Double re-bar section submitted to the external water pressure

RowLocationConditionCoefficientType of unknown
1 $r=r_b$ The stress value at the outer surface of the concrete is equal to the external pressure $P_e$ $C_{co1}$ $C_1$ for the concrete
2 $r=r_4$ Continuity of the stress value at the concrete and outer surface of outer re-bar $C_{co2}$ $C_2$ for the concrete
3 $r=r_4$ Continuity of the displacement at the concrete and outer surface of outer re-bar $C_{so1}$ $C_1$ for the outer re-bar
4 $r=r_3$ Continuity of the stress value at the concrete and inner surface of outer re-bar $C_{so2}$ $C_2$ for the outer re-bar
5 $r=r_3$ Continuity of the displacement at the concrete and inner surface of outer re-bar $C_{cm1}$ $C_1$ for the concrete
6 $r=r_2$ Continuity of the stress value at the concrete and outer surface of inner re-bar $C_{cm2}$ $C_2$ for the concrete
7 $r=r_2$ Continuity of the displacement at the concrete and outer surface of inner re-bar $C_{si1}$ $C_1$ for the inner re-bar
8 $r=r_1$ Continuity of the stress value at the concrete and inner surface of inner re-bar $C_{si2}$ $C_2$ for the inner re-bar
9 $r=r_1$ Continuity of the displacement at the concrete and inner surface of inner re-bar $C_{ci}$ $C_1$ for the concrete
10 $r=r_a$ Zero stress value at the inner surface of the concrete $C_{ci}$ $C_2$ for the concrete
\begin{equation} \begin{bmatrix} a_{1,1} & a_{1,2} & 0 & 0 & \cdots & 0 & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & \cdots & 0 & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & \cdots & 0 & 0 \\ 0 & 0 & a_{4,3} & a_{4,4} & \cdots & 0 & 0 \\ 0 & 0 & a_{5,3} & a_{5,4} & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & a_{8,9} & a_{8,10} \\ 0 & 0 & 0 & 0 & \cdots & a_{9,9} & a_{9,10} \\ 0 & 0 & 0 & 0 & \cdots & a_{10,9} & a_{10,10} \\ \end{bmatrix} \begin{Bmatrix} C_{co1} \\ C_{co2} \\ C_{so1} \\ C_{so2} \\ C_{cm1} \\ C_{cm2} \\ C_{si1} \\ C_{si2}\\ C_{ci1} \\ C_{ci2} \\ \end{Bmatrix} = \begin{Bmatrix} -P_e \\ -\frac{E_s \alpha_s T}{1-\nu_s}\cdot\frac{r_4{}^2-r_3{}^2}{2\cdot r_4{}^2} \\ \frac{1+\nu_s}{1-\nu_s}\alpha_s T \cdot\frac{r_4{}^2-r_3{}^2}{2\cdot r_4} \\ -\frac{E_c \alpha_c T}{1-\nu_c}\cdot\frac{r_3{}^2-r_2{}^2}{2\cdot r_3{}^2} \\ \frac{1+\nu_c}{1-\nu_c}\alpha_c T \cdot\frac{r_3{}^2-r_2{}^2}{2\cdot r_3} \\ -\frac{E_s \alpha_s T}{1-\nu_s}\cdot\frac{r_2{}^2-r_1{}^2}{2\cdot r_2{}^2} \\ \frac{1+\nu_s}{1-\nu_s}\alpha_s T \cdot\frac{r_2{}^2-r_1{}^2}{2\cdot r_2} \\ -\frac{E_c \alpha_c T}{1-\nu_c}\cdot\frac{r_1{}^2-r_a{}^2}{2\cdot r_1{}^2} \\ \frac{1+\nu_c}{1-\nu_c}\alpha_c T \cdot\frac{r_1{}^2-r_a{}^2}{2\cdot r_1} \\ 0 \\ \end{Bmatrix} \end{equation}
\begin{align*} &a_{1,1}=\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} &~&a_{1,2}=-\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_b{}^2} &~& &~& \\ &a_{2,1}=\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} & &a_{2,2}=-\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_4{}^2} & &a_{2,3}=-\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{2,4} =\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_4{}^2} \\ &a_{3,1}=r_4 & &a_{3,2}=\frac{1}{r_4} & &a_{3,3}=-r_4 & &a_{3,4} =-\cfrac{1}{r_4} \\ &a_{4,3}=\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{4,4}=-\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_3{}^2} & &a_{4,5}=-\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} & &a_{4,6} =\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_3{}^2} \\ &a_{5,3}=r_3 & &a_{5,4}=\frac{1}{r_3} & &a_{5,5}=-r_3 & &a_{5,6} =-\cfrac{1}{r_3} \\ &a_{6,5}=\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} & &a_{6,6}=-\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_2{}^2} & &a_{6,7}=-\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{6,8} =\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_2{}^2} \\ &a_{7,5}=r_2 & &a_{7,6}=\frac{1}{r_2} & &a_{7,7}=-r_2 & &a_{7,8} =-\cfrac{1}{r_2} \\ &a_{8,7}=\cfrac{E_s}{(1+\nu_s)(1-2\nu_s)} & &a_{8,8}=-\cfrac{E_s}{1+\nu_s}\cdot\cfrac{1}{r_1{}^2} & &a_{8,9}=-\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} & &a_{8,10}=\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_1{}^2} \\ &a_{9,7}=r_1 & &a_{9,8}=\frac{1}{r_1} & &a_{9,9}=-r_1 & &a_{9,10}=-\cfrac{1}{r_1} \\ &a_{10,9}=\cfrac{E_c}{(1+\nu_c)(1-2\nu_c)} &~&a_{10,10}=-\cfrac{E_c}{1+\nu_c}\cdot\cfrac{1}{r_a{}^2} &~& &~& \\ \end{align*}


Example of the analysis

Comparison with the theoritical solution and the numerical solution

The comparison with the theoritical solution and the numerical solution were carried out using the model shown in below figure which was submitted to the internal water pressure or external water pressure. The state of stress was the plane strain, and the characteristics of the material were that $E=25,000N/mm^2$ , $\nu=0.2$ , where $E$ is the elastick modulus and $\nu$ is Poisson's ratio.

png
\begin{equation*} \begin{cases} u=\cfrac{a^2}{b^2-a^2}\left(\cfrac{(1+\nu)(1-2\nu)}{E}\cdot r+\cfrac{1+\nu}{E}\cdot\cfrac{b^2}{r}\right)\cdot P_a \\ ~~~~-\cfrac{b^2}{b^2-a^2}\left(\cfrac{(1+\nu)(1-2\nu)}{E}\cdot r+\cfrac{1+\nu}{E}\cdot\cfrac{a^2}{r}\right)\cdot P_b \\ \sigma_r=\cfrac{a^2}{b^2-a^2}\left(1-\cfrac{b^2}{r^2}\right)\cdot P_a-\cfrac{b^2}{b^2-a^2}\left(1-\cfrac{a^2}{r^2}\right)\cdot P_b \\ \sigma_{\theta}=\cfrac{a^2}{b^2-a^2}\left(1+\cfrac{b^2}{r^2}\right)\cdot P_a-\cfrac{b^2}{b^2-a^2}\left(1+\cfrac{a^2}{r^2}\right)\cdot P_b \end{cases} \end{equation*}

In above, $\sigma_r$ means the stress in the radial direction, $\sigma_{\theta}$ means the stress in the circumferential direction, $u$ means the displacement in the radial direction.


Theoritical solution (1)
$a$ $b$ $P_a$ $P_b$ $\sigma_{r(a)}$ $\sigma_{\theta(a)}$ $\sigma_{r(b)}$ $\sigma_{\theta(b)}$ $u_a$ $u_b$
3000 3600 1 0 -1.000 5.545 0.000 4.545 0.668 0.628
4000 4800 1 0 -1.000 5.545 0.000 4.545 0.890 0.838
5000 6000 1 0 -1.000 5.545 0.000 4.545 1.113 1.047
3000 3600 0 1 0.000 -6.545 -1.000 -5.545 -0.754 -0.732
4000 4800 0 1 0.000 -6.545 -1.000 -5.545 -1.005 -0.976
5000 6000 0 1 0.000 -6.545 -1.000 -5.545 -1.257 -1.220
Numerical solution (2)
$a$ $b$ $P_a$ $P_b$ $\sigma_{r(a)}$ $\sigma_{\theta(a)}$ $\sigma_{r(b)}$ $\sigma_{\theta(b)}$ $u_a$ $u_b$
3000 3600 1 0 -1.000 5.562 0.000 4.562 0.670 0.630
4000 4800 1 0 -1.000 5.558 0.000 4.558 0.892 0.840
5000 6000 1 0 -1.000 5.555 0.000 4.555 1.115 1.049
3000 3600 0 1 0.000 -6.545 -1.000 -5.545 -0.754 -0.732
4000 4800 0 1 0.000 -6.545 -1.000 -5.545 -1.005 -0.976
5000 6000 0 1 0.000 -6.545 -1.000 -5.545 -1.257 -1.220
Ratio (2)/(1)
$a$ $b$ $P_a$ $P_b$ $\sigma_{r(a)}$ $\sigma_{\theta(a)}$ $\sigma_{r(b)}$ $\sigma_{\theta(b)}$ $u_a$ $u_b$




1.000 1.003 --- 1.004 1.004 1.003




1.000 1.002 --- 1.003 1.002 1.003




1.000 1.002 --- 1.002 1.002 1.002




--- 1.000 1.000 1.000 1.000 1.000




--- 1.000 1.000 1.000 1.000 1.000

In case of the internal water pressure submitted

The concrete is no-tension material in the numerical solution. For this case, the concrete covers were set by 1mm and the re-bars were set as a thick material with the characteristics of the concrete. Therefore, the effective thickness of the cylinder is smaller than that of theoritical solution by 2mm. However, the differences of the displacement and stresses are within 0.5%.

In case of the external water pressure submitted

In this case, the characteristics of re-bars were replaced by those of the concrete. The numerical solution accords in the theoritical solution with the precision of a decimal three columns.

Comparison with FEM

Model for analysis

The comparison with FEM and numerical solution by multiple cylinder theory shown in this page were carried out under the condition shown in below table.

Item Characteristics of the section
Type of cross section Double re-bar Single re-bar
Internal radius of the tunnel 4,000 mm 4,000 mm
Thickness of the concrete 800 mm 600 mm
Outer radius of the bedrock area 50,000 mm 50,000 mm
Concrete cover 100 mm 100 mm
Inner re-bar D32@200x2 D25@250
(equivalent steel plate thickness) 3.97 mm 2.03 mm
Outer re-bar D32@200x2 ---
(equivalent steel plate thickness) 3.97 mm ---
Elastic modulus of the concrete 25,000 N/mm$^2$
Poisson7s ratio of the concrete 0.2 (zero for No-tension material)
Coefficient of Thermal expansion of the concrete 10$\times$10$^{-6}$ $^\circ$C$^{-1}$
Elastic modulus of the re-bar 200,000 N/mm$^2$
Poisson's ratio of the re-bar 0.3
Coefficient of thermal expansion of the re-bar 10$\times$10$^{-6}$ $^\circ$C$^{-1}$
Elastic modulus of the bedrock 1$\sim$100,000 N/mm$^2$
Poisson's ratio of the bedrock 0.25
Coefficient of thermal expansion of the bedrock (no temperature change)
Internal water presure 1 MPa
Temperature change of the RC structure $-$10 $^\circ$C (uniform distribution)

Results

Result by the Multiple Cylinder Theory (1)
Double reinforcement section Single reinforcement section
$E_g$ $\sigma_{sa}$ $\sigma_{sb}$ $\sigma_{rg}$ $\sigma_{\theta g}$ $u_a$ $u_b$ $\sigma_{sa}$ $\sigma_{rg}$ $\sigma_{\theta g}$ $u_a$ $u_b$
1 536.675 468.947 -0.002 0.002 9.505 9.344 1955.928 -0.006 0.006 35.986 35.914
10 527.569 460.987 -0.016 0.015 9.335 9.174 1834.451 -0.060 0.058 33.719 33.646
100 451.932 394.871 -0.133 0.128 7.924 7.761 1136.818 -0.368 0.356 20.701 20.625
1000 200.003 174.651 -0.523 0.505 3.222 3.056 258.703 -0.755 0.730 4.316 4.235
10000 59.570 51.894 -0.741 0.714 0.601 0.433 57.164 -0.844 0.816 0.555 0.473
100000 38.825 33.759 -0.773 0.745 0.213 0.045 34.369 -0.854 0.826 0.130 0.048
Result by FEM (2)
Double reinforcement section Single reinforcement section
$E_g$ $\sigma_{sa}$ $\sigma_{sb}$ $\sigma_{rg}$ $\sigma_{\theta g}$ $u_a$ $u_b$ $\sigma_{sa}$ $\sigma_{rg}$ $\sigma_{\theta g}$ $u_a$ $u_b$
1 536.491 468.795 -0.002 0.002 9.499 9.398 1958.900 -0.006 0.006 36.032 35.961
10 527.304 460.764 -0.015 0.015 9.328 9.226 1836.720 -0.058 0.056 33.753 33.681
100 451.034 394.092 -0.129 0.128 7.905 7.802 1136.380 -0.353 0.345 20.688 20.612
1000 197.480 172.449 -0.504 0.532 3.174 3.067 258.149 -0.722 0.743 4.305 4.224
10000 56.466 49.182 -0.697 1.148 0.542 0.434 57.101 -0.789 1.240 0.554 0.472
100000 35.654 30.989 -0.556 5.329 0.154 0.045 34.373 -0.619 5.397 0.130 0.048
Ratio (2)/(1)
Double reinforcement section Single reinforcement section
$E_g$ $\sigma_{sa}$ $\sigma_{sb}$ $\sigma_{rg}$ $\sigma_{\theta g}$ $u_a$ $u_b$ $\sigma_{sa}$ $\sigma_{rg}$ $\sigma_{\theta g}$ $u_a$ $u_b$
1 1.000 1.000 0.775 0.767 0.999 1.006 1.002 1.027 0.997 1.001 1.001
10 0.999 1.000 0.950 1.005 0.999 1.006 1.001 0.962 0.967 1.001 1.001
100 0.998 0.998 0.967 1.001 0.998 1.005 1.000 0.960 0.969 0.999 0.999
1000 0.987 0.987 0.964 1.053 0.985 1.004 0.998 0.957 1.018 0.997 0.997
10000 0.948 0.948 0.941 1.608 0.902 1.002 0.999 0.935 1.520 0.998 0.998
100000 0.918 0.918 0.719 7.153 0.723 1.009 1.000 0.725 6.534 1.000 0.996

Comments

  • The stresses of re-bar decrease inthe result of FEM with an increase in the elastic modulus of the bedrock. However, this is not significant problem because the absolute value of stress is very small.
  • In the case of large elastic modulus of the bedrock, the difference of stress value of the bedrock betwen FEM result and MCT result becomes large. This is caused by the treatment of the temperature change. In MCT (multiple cylinder theory), only the displacement of the concrete affect to the stress of the bedock. Whereas, in FEM, the temperature change affect to the bedrock element directly, because the temperature changes are inputted on the nodes of boundary between the concrete and the bedrock.
  • The solution by the mutiple cylinder theory is equivalent to the strict solution theoretically, and the stresses of re-bar by FEM are smaller than that by MCT. However, if we want to evaluate the effect of the temperature change with accuracy, it is convenient to use the FEM. Because the strict treatment of the temperature change is too complicated in the treatment of the equations.


Programs

Program and sample data

Script for execution

gfortran -o f90_rcpt f90_rcpt.f90

./f90_rcpt inp_cpt_test.csv out_cpt_test.csv
./f90_rcpt inp_cpt_comp.csv out_cpt_comp.csv

Source code and sample data

FilenameDescription
a_f90.txtShell script for execution
f90_rcpt.f90Stress Analysis of RC pressure tunnel
inp_cpt_test.txtInput data sample (1)
inp_cpt_comp.txtInput data sample (2)

Input data

Cooemnt for output
# line for comment
IE, PP, TT, aa, bb, rr, cc, ta, tb, Ec, nc, ac, Es, ns, as, Eg, ng
・・・・・
  • Comment for output is written in the first line
  • # means a line for comment
  • Data for calculation shall be written in 1 line for 1 case of calculation with CSV.
  • The sequence of data is shown below:
IE 0: for internal pressure, 1: for external pressure
PP Water pressure (for internal pressure: outer direction is positive, for extenal pressure: inner direction is positive)
TT Temperature change (positive: tenperature increase)
aa Internal radius of the circular tunnel
bb Excavated radius (outer radius of the concrete)
rr Outer radius of the bedrock
cc Concrete cover (outer cover has the same value as the inner cover)
ta Equivalent steel plate thickness of inner re-bar
tb Equivalent steel plate thickness of outer re-bar
Ec Elastic modulus of the concrete
nc Poisson's ratio of the concrete
ac Coefficient of thermal expansion of the concrete
Es Elastic modulus of the re-bar
ns Poisson's ratio of the re-bar
as Coefficient of thermal expansion of the re-bar
Eg Elastic modulus of the bedrock
ng Poisson's ratio of the bedrock

Output data

Comment for output
*Input data
k, IE, PP, TT, aa, bb, rr, cc, ta, tb, Ec, nc, ac, Es, ns, as, Eg, ng
..... comma selected value .....
.....   .....   .....
*Output data
k, IE, Eg, dT, sr_c, st_c, sr_si1, st_si1, sr_si2, st_si2, sr_so1, st_so1, sr_so2, st_so2, sr_g, st_g, ua, ub
..... comma selected value .....
.....   .....   .....
k No. of the case    IE 0: for the internal pressure, 1: for the external pressure
Eg Elastic modulus of the bedrock dT Temperature change
sr_c Stress of concrete in the radial direction st_c Stress of the concrete in the circumferential direction
sr_si1 Stress of inner re-bar in the radial direction at inner side st_si1 Stress of inner re-bar in the circumferential direction at inner side
sr_si2 Stress of inner re-bar in the radial direction at outer side st_si2 Stress of inner re-bar in the circumferential direction at outer side
sr_so1 Stress of outer re-bar in the radial direction at inner side st_so1 Stress of outer re-bar in the circumferential direction at inner side
sr_so2 Stress of outer re-bar in the radial direction at outer side st_so2 Stress of outer re-bar in the circumferential direction at outer side
sr_g Stress of the bedrock in the radial direction at the inner boundary st_g Stress of the bedrock in the circumferential direction at the inner boundary
ua Displacement at the inner surface of the concrete (positive: outer direction) ub Displacement at the outer surface of the concrete (positive: outer direction)


inserted by FC2 system