WANtaroHP (f90: Design of Embedded Penstock)



Minimum plate thickness

\begin{equation} t_0=\cfrac{D_0+800}{400} \end{equation}
$t_0$ : Minimum plate thickness including corrosion allowance ($\geqq$6mm)
$D_0$ : Internal diameter of pipe


Pressure sharing design by bedrock

\begin{equation} \sigma=\cfrac{P D}{2 t}(1-\lambda) \end{equation} \begin{equation} \lambda=\cfrac{1-\cfrac{E_s}{P} \cdot \alpha_s \cdot \Delta T \cdot \cfrac{2t}{D}} {1+(1+\beta_c)\cfrac{E_s}{E_c} \cdot \cfrac{2t}{D} \cdot \ln{\cfrac{D_R}{D}}+(1+\beta_g)\cfrac{E_s}{E_g} \cdot \cfrac{m_g+1}{m_g} \cdot \cfrac{2t}{D}} \end{equation}
$\sigma$ : Tensile stress of pipe
$D$ : Internal diameter for stress calculation ($=D_0+\epsilon$)
$t$ : Plate thickness of pipe excluding corrosion allowance ($=t_0-\epsilon$)
$\epsilon$ : Allowance thickness for corrosion and wear (=1.5mm)
$\lambda$ : Sharing ratio of internal pressure by bedrock
$E_s$ : Elastic modulus of steel (=206,000 MPa)
$\alpha_s$ : Thermal expansion coefficient of steel ($=1.2 \times 10^{-5} /^\circ C$)
$\Delta T$ : Temperature change of steel penstock (temperature drop is positive)
$\beta_c$ : Plastic deformation coefficient of concrete (=0)
$E_c$ : Elastic modulus of concrete (=20,600 MPa)
$D_R$ : Excavation diameter of tunnel
$\beta_g$ : Plastic deformation coefficient of bedrock
$E_g$ : Elastic modulus of bedrock
$m_g$ : Poisson's number of bedrock


Buckling pressure of Steel pipe without stiffener

(1) Stress for calculating critical buckling pressure (Amstutz's formula)
\begin{equation} \left(\frac{k_0}{r_m}+\frac{\sigma_N}{E_s^*}\right)\left(1+12\frac{{r_m}^2}{t^2}\frac{\sigma_N}{E_s^*}\right)^{1.5} =3.36\frac{r_m}{t}\frac{\sigma_F^*-\sigma_N}{E_s^*}\left(1-\frac{1}{2}\frac{r_m}{t}\frac{\sigma_F^*-\sigma_N}{E_s^*}\right) \qquad\qquad (1) \end{equation}
(2) Critical buckling pressure
\begin{equation} p_k=\cfrac{\sigma_N}{\cfrac{r_m}{t}\left(1+0.35\cfrac{r_m}{t}\cfrac{\sigma_F^*-\sigma_N}{E_s^*}\right)} \qquad\qquad (2) \end{equation}
(3) Properties of steel material
\begin{equation} E_s^*=\frac{E_s}{1-{\nu_s}^2} \qquad \sigma_F^*=\mu\frac{\sigma_F}{\sqrt{1-\nu_s+{\nu_s}^2}} \qquad \mu=1.5-0.5\cfrac{1}{(1+0.002\cdot E_s/\sigma_F)^2} \end{equation}
(4) Gap between outer surface of steel pipe and inner surface of backfill concrete
\begin{equation} k_0=\cfrac{(\alpha_s\Delta T+\beta_g\sigma_a\eta/E_s) r_0'}{1+\beta_g} \end{equation}

If compressive stress $\sigma_v$ is applied in the steel pipe, $k_0/r_m$ shall be changed to $-\sigma_v/E_s^*$ .

(5) Definitions of symbols
$p_k$ : Critical buckling pressure
$D_0$ : Internal diameter of the pipe
$t_0$ : Plate thickness of the pipe
$t$ : plate thickness of the pipe excluding margin thickness ($=t_0-\epsilon$)
$\epsilon$ : Margin thickness for corrosion and wear
$E_s$ : Elastic modulus of steel
$\nu_s$ : Poison's ratio of steel
$r_m$ : Radius to the center of shell thickness ($=(D_0+t_0)/2$)
$r_0'$ : Radius to the external surface of shell ($=(D_0+2 t_0)/2$)
$\sigma_N$ : Critical axial stress at the moment of buckling
$\sigma_F$ : Yield stress of steel shell
$E_s^*$ : Modified elastic modulus including Poisson's effect
$\sigma_F^*$ : Modified yield stress including Poisson's effect
$\mu$ : Coefficient for supporting effect
$k_0$ : Gap between concrete and external surface of steel pipe
$\alpha_s$ : Coefficient of thermal expansion of steel
$\Delta T$ : Temperature change of steel pipe (positive is decrease of temperature)
$\beta_g$ : Plastic deformation modulus of be
$\eta$ : Joint efficiency
$\sigma_a$ : Allowable stress of steel pipe


Buckling pressure of Steel pipe with stiffeners

Steel pipe

(1) Critical backling pressure (Timoshenko's formula)
\begin{equation} \cfrac{(1-\nu_s^2) r_0' p_k}{E_s t}= \cfrac{1-\nu_s^2}{(n^2-1)\left(1+\cfrac{n^2 L^2}{\pi^2 r_0'^2}\right)^2}+ \cfrac{t^2}{12 r_0'^2}\left\{(n^2-1)+\cfrac{2 n^2-1-\nu_s}{1+\cfrac{n^2 L^2}{\pi^2 r_0'^2}}\right\} \end{equation}
(2) Modified interval of stiffeners
\begin{equation} L'=(L+1.56 \sqrt{r_m t} \cos^{-1}\lambda) \left(1+0.037\cdot \cfrac{\sqrt{r_m t}}{L+1.56 \sqrt{r_m t}\cos^{-1}\lambda} \cdot \cfrac{t^3}{I_s}\right) \end{equation}
\begin{equation} \lambda=1-(1+T)\cdot \cfrac{1+\cfrac{t_r}{1.56 \sqrt{r_m t}}}{1+\cfrac{S_0}{1.56 t \sqrt{r_m t}}} \end{equation}
\begin{equation} T=\cfrac{2}{t_r+1.56\sqrt{r_m t}} \cdot \cfrac{\cfrac{r_0'^2}{t}-\cfrac{(t_r+1.56\sqrt{r_m t}) r_0'^2}{S_0+1.56 t \sqrt{r_m t}}} {\cfrac{3}{[3(1-\nu_s^2)]^{0.75}}\left(\cfrac{r_0'}{t}\right)^{1.5} \cfrac{\sinh{\beta L}+\sin{\beta L}}{\cosh{\beta L}-\cos{\beta L}} +\cfrac{2 r_0'^2}{S_0+1.56 t \sqrt{r_m t}}} \end{equation}
\begin{equation} \beta=\cfrac{[3(1-\nu_s^2)]^{0.25}}{\sqrt{r_m t}} \qquad S_0=t_r (t+h_r) \qquad I_s=\cfrac{t_r}{12}(h_r+t)^3 \end{equation}

Stiffener

(1) Critical buckling stress
\begin{equation} \sigma_{cr}=\sigma_N \left\{1-\cfrac{r_0'}{e}\cfrac{\sigma_F-\sigma_N}{(1+3 \pi/2) E_s}\right\} \end{equation}
(2) Stress for calculating critical buckling stress (Amstutz's formula)
\begin{equation} \left(\frac{k_0}{r_m}+\frac{\sigma_N}{E_s}\right)\left(1+\frac{{r_m}^2}{i^2}\frac{\sigma_N}{E_s}\right)^{1.5} =1.68\frac{r_m}{e}\frac{\sigma_F-\sigma_N}{E_s}\left(1-\frac{1}{4}\frac{r_m}{e}\frac{\sigma_F-\sigma_N}{E_s}\right) \end{equation}
\begin{equation} e=\cfrac{b t^2/2 + t_r h_r (t+h_r/2)}{A} \qquad b=t_r+1.56\sqrt{r_m t} \qquad A=b t + t_r h_r \end{equation}
\begin{equation} i=\sqrt{\cfrac{I}{A}} \qquad I=\cfrac{b}{3}\left\{(t-e)^3-e^3\right\}+\cfrac{t_r}{3}\left\{(h_r+t-e)^3-(t-e)^3\right\} \end{equation}
(3) Average compressive stress
\begin{equation} \sigma_c=\cfrac{p' r_0' (t_r+1.56\sqrt{r_m t})}{S_0+1.56 t \sqrt{r_m t}} \end{equation}
(4) Modified external pressure
\begin{equation} p'=\cfrac{p}{t_r+1.56\sqrt{r_m t}} \left\{ (t_r+1.56\sqrt{r_m t})+2 \cdot \cfrac{\cfrac{r_0'^2}{t}-\cfrac{(t_r+1.56\sqrt{r_m t}) r_0'^2}{S_0+1.56 t \sqrt{r_m t}}} {\cfrac{3}{[3(1-\nu_s^2)]^{0.75}}\left(\cfrac{r_0'}{t}\right)^{1.5} \cfrac{\sinh{\beta L}+\sin{\beta L}}{\cosh{\beta L}-\cos{\beta L}} +\cfrac{2 r_0'^2}{S_0+1.56 t \sqrt{r_m t}}} \right\} \end{equation}
(5) Safety factor against buckling of stiffener
\begin{equation} S_f=\cfrac{\sigma_{cr}}{\sigma_c} \end{equation}

Definitions of symbols

$p_k$ : Critical buckling pressure
$n$ : Number of winkles
$L$ : Interval of stiffeners
$L'$ : Modified interval of stiffeners
$t_r$ : plate thickness of stiffeners excluding margin thickness
$h_r$ : Height of stiffeners
$\sigma_{cr}$ : Critical buckling stress of stiffeners
$\sigma_{c}$ : Average compressive stress of stiffeners
$e$ : Distance from centroid of combined section to internal surface of pile
$i$ : Radius of gyration of combined section
$p$ : External pressure
$p'$ : Modified external pressure
$S_f$ : Safety factor against stiffener buckling


Programs

FilenameDescription
a_d.txtshell scropt for execution of 'f90_ams_d'
a_dd.txtshell script for execution of 'f90_ams_dd'
a_stiff.txtshell script for execution of 'f90_stiff'
f90_ams_d.f90calculation of buckling pressure without stiffeners
f90_ams_dd.f90calculation of required plate thickness
f90_stiff.f90calculation of buckling pressure with stiffeners


inserted by FC2 system